Ebola Virus Glycoprotein Needs an Additional Trigger, beyond Proteolytic Priming for Membrane Fusion

نویسندگان

  • Shridhar Bale
  • Tong Liu
  • Sheng Li
  • Yuhao Wang
  • Dafna Abelson
  • Marnie Fusco
  • Virgil L. Woods
  • Erica Ollmann Saphire
چکیده

BACKGROUND Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50-90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP(1,2)) on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP(1,2) is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP(1,2) trimeric, viral surface spike. After entry into host endosomes, GP(1,2) is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown. PRINCIPAL FINDINGS We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS) of glycoproteins from two different ebolaviruses that although enzymatic priming of GP(1,2) is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP(1,2). Further, ELISA binding data of primed GP(1,2) to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion. SIGNIFICANCE The results reveal that the ebolavirus GP(1,2) ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP(1,2) and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change.

Cellular entry of Ebola virus (EBOV), a deadly hemorrhagic fever virus, is mediated by the viral glycoprotein (GP). The receptor-binding subunit of GP must be cleaved (by endosomal cathepsins) in order for entry and infection to proceed. Cleavage appears to proceed through 50-kDa and 20-kDa intermediates, ultimately generating a key 19-kDa core. How 19-kDa GP is subsequently triggered to bind m...

متن کامل

Chemical and Structural Aspects of Ebola Virus Entry Inhibitors

The Ebolaviruses are members of the family Filoviridae ("filoviruses") and cause severe hemhorragic fever with human case fatality rates as high as 90%. Infection requires attachment of the viral particle to cells and triggering of membrane fusion between the host and viral membranes, a process that occurs in the host endosome and is facilitated by the envelope glycoprotein (GP). One potential ...

متن کامل

Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1

Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for...

متن کامل

Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution

We present the structure of the surface Ebola virus (EBOV) trimeric glycoprotein (GP) spike at 11 Å resolution, in situ within the viral plasma membrane of purified virus particles. GP functions in cellular attachment, endosomal entry, and membrane fusion to initiate infection, and is a key therapeutic target. Nevertheless, only about half of the GP molecule has yet been solved to atomic resolu...

متن کامل

Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments

Lassa virus (LASV) is an arenavirus whose entry into host cells is mediated by a glycoprotein complex (GPC) comprised of a receptor binding subunit, GP1, a fusogenic transmembrane subunit, GP2, and a stable signal peptide. After receptor-mediated internalization, arenaviruses converge in the endocytic pathway, where they are thought to undergo low-pH-triggered, GPC-mediated fusion with a late e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011